
Page 20 FoxRockX May 2009

There are lots of places in VFP code where you
don’t know until the code is running exactly what
you want it to do. Perhaps you want to let the user
choose a file to operate on, or you want to run a
report based on criteria specified by a user. VFP of-
fers a number of different ways to handle code that
isn’t known until run-time. Knowing which one to
use when affects the efficiency, accuracy, and reli-
ability of your code, but many people stick with
macros and don’t use any of the other options. In
this article, I’ll look at each of the options and dis-
cuss where it’s appropriate.

Macros
The macro substitution operator, &, was already
available when I started using FoxBase+. As its
name suggests, it substitutes the contents of the
specified variable into the code. Macros are useful
when you need to substitute a keyword into your
code or when you want to build up all or part of a
command before executing it.

The prototypical use for macros (and, I sus-
pect, the reason we have them at all) is in handling
the various SET commands that let us control the
way VFP operates. Many of them expect the literal
string ON or OFF as their operand. When you need
to save and restore one of these values, a macro
makes the code quite compact, as in Listing 1.

Listing 1.The macro operator lets you substitute the right key-
word into the SET commands.
cOldSafety = SET("SAFETY")
SET SAFETY OFF

* Code that overwrites a file
* without prompting

SET SAFETY &cOldSafety

The other principal use for macros in VFP 9
is to build a command or a portion of a command
based on user input or other factors. For example,
my applications have a form class for reporting that
includes an abstract method called GetReportData.
Forms based on that class usually contain a number
of controls where the user indicates which records

to include in the report. The code in GetReportData
typically populates a variable called cWhere based
on the user’s selections, and then macro-expands
cWhere in a SQL SELECT command to collect the
desired data. The code in Listing 2 is drawn from
such a form. It stores a condition to the variable
cWhere, based on whether the user wants to list
only people with US addresses, only those with
non-US addresses or only those from a particular
state or province. That variable is then used in the
WHERE clause of the query that grabs the report
data.

Listing 2. Macros are handy when you want to construct all or
part of a command in code and then execute it.
cWhere = ".T."

DO CASE
CASE This.opgIncludeLocation.Value = 2
 * US only
 cWhere = [cCountry = "USA"]

CASE This.opgIncludeLocation.Value = 3
 * Foreign only
 cWhere = [cCountry <> "USA"]

CASE This.opgIncludeLocation.Value = 4
 * One state
 cWhere = [cState = "] + ;
 This.cboStateProvince.Value + ["]

OTHERWISE
ENDCASE

* Some other things happen in here,
* including cOrder getting set to
* the list of sort fields chosen.
SELECT iID, cFirst, cLast, cPublic, ;
 mStreetAddr + CRLF + ;
 IIF(EMPTY(cCity), "", ;
 ALLTRIM(cCity) + ", " + ;
 ALLTRIM(cState) + " " + ;
 cPostCode + CRLF) + cCountry ;
 AS cFullAddress, ;
 mEmail, curPerson.mNotes, ‘
 lForum, dJoined, ;
 cCountry, cState, cPostCode ;
 FROM curPerson ;
 WHERE &cWhere ;
 ORDER BY &cOrder ;
 INTO CURSOR csrPerson

In early versions of Fox, macros were also use-
ful for letting you work with tables and fields with-

Handling Code that
Changes at Runtime
What’s the best way to do things if you don’t know exactly what code to run until you need to run it?

Tamar E. Granor, Ph.D.

May 2009 FoxRockX Page 21

out knowing their names. For example, code like
Listing 3 was common.

Listing 3. In early versions of Fox, accessing a table or field
without knowing its name required a macro.
USE &cTable

Today, you should avoid using macros with
variables that contain filenames. Since Windows
95 eliminated the 8.3 naming convention for files,
file names may contain spaces. When you macro-
expand a filename with embedded spaces, you’ll
either get an error or unexpected behavior. For ex-
ample, say the variable cTable contains “C:\DOC-
UMENTS AND SETTINGS\TAMAR GRANOR\
APPLICATION DATA\MICROSOFT\VISUAL
FOXPRO 9\FOXUSER.DBF”, which is the default
location for the VFP Resource file. Issuing USE
&cTable results in error 36, “Command contains
unrecognized phrase/keyword.” That’s because
everything after the first space is seen as addition-
al clauses for the USE command; since there’s no
AND clause, the command fails. See the section on
Name expressions later in this article for a better
alternative.

The EVAL() function
Eventually, the Fox team noticed that while macros
were useful, sometimes you knew that what you
wanted to evaluate on the fly was an expression.
Apparently, knowing that you’re evaluating an ex-
pression rather than a command or a part of a com-
mand allows the FoxPro engine to do things faster.
So, in FoxPro 2.0, they added the EVALUATE()
function (fairly universally abbreviated EVAL())
that lets you store an expression in a string and
then evaluate it.

EVAL() is useful in reports, where macros don’t
work. For example, if you want to put the third field
of the table in a report expression and you don’t
know its name, you can use EVAL(FIELD(3)).

EVAL() is also handy for turning the names of
objects into object references. For example, if you
have a variable cControl that contains the name of
a control on a form, you can get a reference to the
control itself with code like Listing 4.

Listing 4. Use EVAL() to turn the names of objects into object
references.
oControl = EVAL("ThisForm." + m.cControl)

Don’t use EVAL() in FOR clauses; use a macro
instead. When you EVAL(), the string is re-eval-
uated for each record, while a macro is expanded
once. (The condition is evaluated for each record
in either case, but the preparation varies.) I used
the program in Listing 5 (MacroVsEval.PRG in this
month’s downloads) to test; I found that the mac-
ro version took about a quarter of the time of the
EVAL() version.

Listing 5. While EVAL() is usually a better choice than a mac-
ro, that’s not true in a FOR clause.
#DEFINE PASSES 1000

OPEN DATABASE HOME(2) + "Northwind\Northwind"

USE Northwind!OrderDetails

LOCAL nStart, nEnd, nPass, cCondition

cCondition = "Discount > 0"

nStart = SECONDS()
FOR nPass = 1 TO PASSES
 COUNT FOR &cCondition
ENDFOR
nEnd = SECONDS()

?"With macro, ", PASSES, " passes take ", ;
 nEnd-nStart

nStart = SECONDS()
FOR nPass = 1 TO PASSES
 COUNT FOR EVALUATE(m.cCondition)
ENDFOR
nEnd = SECONDS()

?"With EVALUATE(), ",PASSES, ;
 " passes take ", nEnd-nStart

RETURN

Name expressions
At the same time that EVAL() was added, the Fox
team gave us name expressions, also known as in-
direct references. These let you store the name of a
thing in a variable and operate on that variable. It’s
useful anywhere that VFP expects a name, whether
it’s a table name, a field name, a file name, an alias,
or some other name. For example, if you have the
name of a table you want to open in the variable
cTable, you can open the table as in the first line
of Listing 6. You can go farther with this, though.
Say, you have not just the table name, but the order
you want and the alias you want to assign stored in
variables. Each can use a name expression, as in the
second line.

Listing 6. Use a name expression to open a table when the
table name is stored in a variable.
USE (m.cTable) IN 0

USE (m.cTable) IN 0 ORDER (m.cOrder) ;
 ALIAS (m.cAlias)

The biggest reason for using name expressions
is macros’ inability to handle names that include
embedded spaces. While you may choose not to
use spaces in file names, you rarely can control the
complete path to your application. So addressing
files with a macro is an invitation to crash your
code.

It’s been an article of faith for many years
that name expressions are faster than macros. In
my tests, that’s true, but the differences I see are
minimal, on the order of 1% or less. However, it
appears that the slow part in my tests is opening

Page 22 FoxRockX May 2009

the table and that that’s overwhelming the differ-
ence between the two approaches. If I test with the
table already open in another work area (MacroVs-
NameExp.PRG in this month’s downloads), I find
that using the name expression takes about 75% of
the time of the macro.

Regardless of speed issues, the protection name
expressions give you for embedded spaces means
that you should always use a name expression
rather than a macro when the command expects a
name.

Compile at runtime
For many years, these three techniques (macros,
EVAL() and name expressions) were all the native
choices you had for specifying code at runtime.
Then, in Service Pack 3 for VFP 6, the Fox team of-
fered another option: compiling code at runtime.

Until that version, the COMPILE command
worked only at design-time, so you had to write
and compile all code ahead of time, though you
could use code or data to decide which code to ac-
tually run.

Combined with the text manipulation com-
mands I covered in earlier articles in this series
(such as StrToFile()), this change made it possible to
generate code dynamically, then compile it and ex-
ecute. But the need for COMPILE at runtime didn’t
last long.

EXECSCRIPT()
In VFP 7, the Fox team added the EXECSCRIPT()
function, which compiles and executes the string
you pass it. The big advantage EXECSCRIPT() and
runtime compilation have over earlier techniques
is that they can handle multi-line sequences of
code, where a macro allows you to substitute for
at most one full line of code. This means that you
can even use structures like loops in code executed
this way.

EXECSCRIPT() has one required parameter, a
string, which it executes. If an error occurs while
executing the code, the prevailing error handler
deals with it.

EXECSCRIPT() can also accept parameters to
pass on to the code it executes. The syntax is:
EXECSCRIPT(cCode [, uParam1 [, uParam2, …]])

Where would you use it EXECSCRIPT()? One
place is for data-driving processes. For example,
in one application I’m working on, I have to check
Canadian health IDs to make sure they meet the
rules for the appropriate province. There are some
common techniques, but each province has slightly
different rules.

I have a class that contains methods for com-
mon functionality. The process is driven by a table
with one record for each province. That record has

a memo field containing the exact code I need to
execute to do the check for that province. It may or
may not use some of the common methods. Each
of those code blocks accepts two parameters: the
health ID to check and an object reference to the
class.

My code to do the actual check pulls the memo
field for the right province into a variable, cCode,
and then has this line:
lReturn = EXECSCRIPT(cCode, ;
 ALLTRIM(cID), This)

By passing a reference to the ID checking class
into the stored code, it can make calls to the com-
mon methods in the class.

The ability to call code this way avoids having
a complex CASE statement in this code, and means
that if (when) a province changes its rules, only a
single table needs to change, not the whole class.

Making the right choice
With so many ways to specify code at runtime, how
can you decide which one to use? The rules are ac-
tually pretty simple:

When you want to use a variable or expression
to substitute for a name, always use a name expres-
sion.

When you want to substitute for an expression,
use EVAL() except when you’re in a FOR clause.

When you want to substitute for all or part of
a command, but not a name or expression, use a
macro.

Finally, when you need to substitute for a block
of lines, use EXECSCRIPT().

Help me write this column
If you’ve changed the way you write VFP code, and
you’re using new functions, commands, classes, or
other language elements that I haven’t covered in
this column, please drop me a note at the address
below.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s So-
lutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. She currently focuses on working with
other developers through consulting and subcontract-
ing. Tamar is author or co-author of ten books includ-
ing the award winning Hacker’s Guide to Visual Fox-
Pro, Microsoft Office Automation with VisualFoxPro
and Taming Visual FoxPro’s SQL . Her latest collabo-
ration is Making Sense of Sedna and SP2, coming out
this year. Her books are available from Hentzenwerke
Publishing (www.hentzenwerke.com). Tamar is a Mi-
crosoft Support Most Valuable Professional. In 2007,
Tamar received the Visual FoxPro Community Lifetime
Achievement Award. You can reach her at tamar@thegra-
nors.com or through www.tomorrowssolutionsllc.com.

